
260 J. Am. Chem. StX. 1985, 107, 260-261 

and/Of-IrH1P,. it is the heat of protonation of NFt , that drives 
the endergonic/ac -» mer transformation. Nevertheless, the fact 
that substoichiometric I rH 4 Pj + can convert not only/or to mer 
but also the reverse indicates that this system lacks the stereo-
specificity that characterizes the transition state (P5IrH4-•• 
NEtJ*) ' . One possibility is that the proton transfer occurs not 
from IrH4P3* but instead from the unsaturated IrH2P1* whose 
existence we have demonstrated (eq 3). It is well established that 
unsaturated complexes condense with hydride complexes to form 
hydride bridged dimers.1314 Such reactions are fast, and frag­
mentation of (P3IrHv "H 1 I rPO + (eq 5) need not occur with the 

IrH2P3
+ + mer-lr*H3Pj — P1IrH2---H3Ir4P3

+ — 
Ir4H2P5

+ +fac- and /Wr-IrH3Pj (5) 

same stereoselectivity as shown by (P,IrH4---NEt3)+ . This 
mechanism has the added advantage that it is less susceptible to 
the steric rate reduction reported previously for proton transfer 
between a saturated transition-metal hydride and its conjugate 
base (HMo(CO)2(dppe),+ with Mo(CO)2(dppe)2).15 Discrim­
ination between mechanistic alternatives for this unusual reaction 
is the focus of current work. 
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Figure 1. DNA cleavage by bleomycin analogues. Reaction mixtures 
contained 15 *iM SV40 DNA in 20 mM sodium cacodylate. pll 7.0 (lane 
1), plus 0.5 |iM Fc"-BLM A2 (lane 2), 1. 5, 10, and 50 uM Fc"-dc-
glyco-BLM A2 (lanes 3-6. respectively), I. 5, 10, and 50 uM Fc(N-
H4)2(S04)2 (lanes 7-10), I, 5. 10. and 50 MM Fc"-2 (lanes 11-14), or 
I, 5, 10, and 50 »iM Fe"-3 (lanes 15 18). Lanes 4-6 reflect extensive 
DNA degradation by dcglyco-BLM A2. 

by the N-terminus,1 ' '5 although there is only limited direct sup­
porting evidence. The appearance of several recent reports con­
taining data whose interpretation appears inconsistent with this 
view6 prompts us to describe experiments that employ bleomycin 
analogues lacking the putative DNA binding domain. Presently, 
we demonstrate that the C-terminus of bleomycin is required for 
DNA strand scission, and that oxygen activation can be effected 
by the N-terminus alone. Also illustrated for the first time is the 
transfer of oxygen from an activated Fc complex to a cis olefin 
with preferential formation of the fran.t-epoxide. 

Bleomycin derivatives lacking the carbohydrate moiety (e.g., 
deglycobleomycin A2 ( Ia)) bind metal ions and activate oxygen 
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The bleomycins are a family of glycopeptide-derived antitumor 
antibiotics used clinically for the treatment of squamous cell 
carcinomas and malignant lymphomas.1 At least three metal-
lobleomycins mediate oxidative DNA strand scission,2 and it is 
this property of the bleomycins that is believed to be responsible 
for their therapeutic effects. Bleomycin-mediated DNA cleavage 
is sequence selective3 and is generally thought to result from DNA 
recognition and binding by the bithiazole moiety and C-terminal 
substituent of BLM,4 and metal chelation and oxygen activation 
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nearly as well as the respective bleomycins (bleomycin A2 (lb)).7 

They have been shown to mediate DNA strand scission with the 
same sequence specificity as the respective bleomycins;5*1 following 
anaerobic activation with C6H5IO both bleomycin and deglyco-
bleomycin converted cfc-stilbene to cw-stilbene oxide.50,7 For the 
present study we employed an analogue of deglycobleomycin 
(compound 28) lacking the putative DNA binding domain, as well 

H2N^j-O H NH2 

T H V 

p"H o 

^"YTH? T I 
CH3HN V A N ^ J X H H 
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N 

product. Previous studies using cytochrome P-450 and related 
model compounds containing ligated Fe have shown the cis isomer 
of stilbene to be the preferred substrate for epoxidation and 
m-stilbene oxide to be the predominant product.14 Analogous 
findings for three metallobleomycins2e'5c and two metallode-
glycobleomycins7 have reinforced these observations, as well as 
the mechanistic similarities between bleomycin and cytochrome 
P-450 as regards oxygen activation and transfer. The present 
finding parallels the observation by Valentine and co-workers that 
fra/w-stilbene oxide was produced from cw-stilbene via the agency 
of Cu(N03)2 + C6H5IO.15 It seems reasonable to suggest that 
the stereoselectivity noted previously for cw-stilbene finds its basis 
in the greater steric accessibility of this isomer to the bulky ep-
oxidizing agents.16 
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as a structurally simpler analogue (3) reported by Henichart et 
al.10 

Shown in Figure 1 is the attempted cleavage of SV40 form I 
DNA using 2 and 3 in the presence of Fe(II) and O2.

11 At 
concentrations of Fe"-2 (lanes 11-14) and Fen-3 (lanes 15-18) 
up to 50 ;itM, no conversion to form II (nicked circular) DNA 
or form III (linear duplex) DNA was noted beyond that produced 
by Fe(II) alone (lanes 7-10). In contrast, Fe(II)-deglyco-
bleomycin produced extensive DNA degradation when tested over 
the same concentration range (lanes 3-6). 

Although the lack of activity of Fe(II) + 2 or 3 in DNA strand 
scission seemed likely to be due to the absence of the putative DNA 
binding domain, it was also possibly due to lack of Fe(II) binding 
by 2 or 3 or to an inability to activate or transfer oxygen. Ac­
cordingly, the formation of Fen-2 and Fen-3 was established by 
spectral determination,12 and each was utilized for the attempted 
epoxidation of m-stilbene following activation with C6H5IO, a 
transformation already established for bleomycin50 and deglyco­
bleomycin.7 When employed at 0.57 mM concentration, Feni-2 
and Fem-3 both effected epoxidation of ris-stilbene; the yields were 
— 150% in each case, based on added ligand.13 Similar yields 
of trans-epoxide were obtained when Fen-2 or Fen-3 were incu­
bated in the presence of cw-stilbene + O2 + ascorbate. This 
confirmed the activation and transfer of oxygen by 2 and 3 in more 
traditional bimolecular reactions and served to define those 
structural components of BLM required for oxygen activation. 

One remarkable feature of c/'j-stilbene oxidation by 2 and 3 
was the finding that Jra/w-stilbene oxide was the predominant 
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102, 6631. (b) Arai, H.; Hagmann, W. K.; Suguna, H.; Hecht, S. M. Ibid. 
1980, 102, 6633. 
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101, 1032. (b) Groves, J. T.; Nemo, T. E. Ibid. 1983, 105, 5786. 

(15) Franklin, C. C; Van Atta, R. B.; Fan Tai, A.; Valentine, J. S. J. Am. 
Chem. Soc. 1984, 106, 814. 
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The reaction of (ethylene)bis(tri-o-tolyl phosphite)nickel, 
(C2H4)L2Ni(O) [L = P(0-o-tolyl)3] (1), with ethylene and hy­
drogen cyanide at -40 0C produces (C2H4)L(CN)(C2H5)Ni(II) 
(2) quantitatively (eq 1). Reaction of 2 with tri-o-tolyl phosphite 

CH2 

L2Ni — Il + HCN + C2H4 

CH2 

1 

L — N i — Et + L 

CH2=LcH2 

(1) 

N 
C 

L — N i - E t + L 1 ^ - L2Ni 

C H 2 - C H 2 

CH2 

CH2 

+ EtCN (2) 

(L) causes reductive elimination of propionitrile and regenerates 
1 (eq 2). 

As part of our continuing studies of olefin hydrocyanation, we 
carried out kinetic measurements of the previously reported 
nickel-catalyzed hydrocyanation of ethylene,1 eq 3, at low tem-

H C N + C 2 H 4 

Ni(O) 
- C2H5CN (3) 

perature utilizing proton N M R spectroscopy. Starting with the 
ethylene complex 1 rather than the [(o-tolyl-0)3P]3Ni previously 

(1) Tolman, C. A.; Seidel, W. C; Druliner, J. D.; Domaille, P. J. Or-
ganometallics 1984, 3, 33-38. 
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